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Abstract
In non-ideal plasmas, the dielectric function has to be treated beyond the
random phase approximation. Correlations as well as collisions have to be
included. These corrections are known as (dynamical) local field corrections.
Based on the Zubarev approach to linear response theory, a relaxation time
approximation is proposed leading to an interpolation scheme between static
local field corrections and the Drude model in the long-wavelength limit. The
approach generalizes the Mermin approximation for the dielectric function and
allows for the inclusion of a dynamical collision frequency. A numerical
illustration is given for a classical two-component plasma at intermediate
coupling.

PACS numbers: 52.25.Mq, 52.27.Gr

A multitude of experimental observables in the analysis of dense plasmas are directly linked
to the (longitudinal) dielectric function ε(k, ω). Examples range from the reflectivity and
the absorption coefficient to the pair distribution function and the (dynamic) structure factor
[1]. While the dielectric function for weakly coupled plasmas can be well described by the
random phase approximation (RPA), it is necessary to include correlations into the dielectric
function to address the physics of strongly coupled plasmas. Corrections beyond the RPA
are traditionally described by the so-called local field corrections. For the interacting electron
gas, local field corrections have been investigated in great detail since the pioneering work of
Hubbard [2]. Also, approximative schemes for two-component plasmas have been developed
[3]. For general wave vectors k and frequencies ω, the derived expressions tend to be very
involved and tedious to calculate, see [4]. It is the objective of this paper to propose a scheme
which interpolates between the static limit ω → 0 and the long-wavelength limit k → 0.
In the course of this task, we will generalize an approach due to Mermin [5] and derive an
approximative expression for the response function of an electron–ion plasma in terms of local
field corrections for the electron gas and an electron–ion collision frequency. To be specific,
we consider a fully ionized two-component plasma of electrons and ions with temperature
T and electron density ne. The central quantities in our description are the partial density
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Figure 1. Imaginary part of the response function as a function of the frequency ω for wave
vector k = 0.3 κ . Parameters: � = 0.5, θ = 1. Extended Mermin approach compared to other
approximations.

response functions χcc′ , where c labels the species, 1/ε(k, ω) = 1 +
∑

cc′ Vcc′(k)χcc′(k, ω).
Local field corrections are introduced generalizing the random phase approximation via

χcc′(k, ω) = χ(0)
c (k, ω)δcc′ + χ(0)

c (k, ω)	0V
s
cc′(k, ω)χ

(0)
c′ (k, ω),

V s
cc′(k, ω) = Vcc′(k) (1 − Gcc′(k, ω))

+
∑

d

Vcd(k) (1 − Gcd(k, ω)) χ
(0)
d (k, ω)V s

dc′(k, ω),

where Vcc′(k) is the Fourier transformed potential, 	0 is a normalization volume and χ(0)
c is

the response function for the non-interacting system. For Gcc′ = 0, the RPA is recovered.

Mermin ansatz including local field corrections

Following Mermin [5], a relaxation time approximation that obeys particle number
conservation, is given by

χ(M)
ee (k, ω) =

(
1 − iω

η

) (
χRPA,e(k, ω + iη)χRPA,e(k, 0)

χRPA,e(k, ω + iη) − (iω/η) χRPA,e(k, 0)

)
, (1)

where η is a parameter to be determined outside of the Mermin approximation. While this
expression shows the desired Drude-like behaviour in the long-wavelength limit allowing to
identify η = ν as a collision frequency, it fails to improve the static limit beyond the RPA
result. Specifically, we have limω→0 χ(k, ω) = χRPA,e(k, 0) irrespective of the value of ν. We
rectify this shortcoming of the Mermin approach by rederiving the approximation within the
Zubarev approach to the non-equilibrium statistical operator. Starting from the Liouville–von
Neumann equation for the statistical operator ρ , we approximate the general expression with
the total Hamiltonian Htot and η → 0,

∂ρ(t)

∂t
+

i

h̄
[Htot(t), ρ(t)] = −η(ρ(t) − ρrel(t)),
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Figure 2. Imaginary part of the response function as a function of the frequency ω for wave vector
k = κ . Parameters: � = 4, θ = 1. Extended Mermin approach compared to other approximations.

by a relaxation time ansatz involving the external perturbation Hext, the intra-species
interactions, and a finite relaxation term η accounting for the electron–ion interaction

∂ρ(t)

∂t
+

i

h̄
[Hkin + Vee + Vii + Hext(t), ρ(t)] = −η (ρ(t) − ρrel(t)) . (2)

Using the Zubarev technique allows us to impose conserved quantities as self-consistency
conditions on the relevant statistical operator ρrel. Proceeding along the lines presented in [6],
the density response function χcc′ is then given in linear response by correlation functions as

χcc′(k, ω) = −β	0

(
nc

k, n
c′
k

) 〈
nc

k; ṅc′
k

〉
ω+iη〈

nc
k;

(
ṅc′

k + iωnc′
k

)〉
ω+iη

. (3)

(., .) is the Kubo product and 〈., .〉 its Laplace transform. Replacing the Kubo products by
response functions, the extended Mermin approximation reads

χ(xM)
ee (k, ω) =

(
1 − iω

η

) (
χee(k, ω + iη)χee(k, 0)

χee(k, ω + iη) − (iω/η) χee(k, 0)

)
, (4)

where χee(k, ω) is the response function of interacting one-component electron gas. This
expressions still results in a Drude-like form for k → 0, while the static limit now reproduces
the static local field correction, limω→0 χ(xM)

ee (k, ω) = χee(k, 0).

Local field corrections for a classical two-component plasma

We present exploratory calculations which serve as a proof of principle taking � = 0.5 and
� = 4 with θ = 1. Here, we use the non-ideality parameter � = e2/(4πε0kBT ) (4πn/3)1/3

and the degeneracy parameter θ = (2mekBT )/h̄2(3πn)−2/3 for a plasma with density n and
temperature T ,me being the electron mass. We consider an adiabatic model of interacting
electrons scattering on randomly distributed but inert ions. χee(k, ω) is taken for a classical
OCP where the static local field corrections are related to the static structure factor S(k) via
Gee(k) = 1 + k2/κ2(1 − 1/S(k)), κ = (e2n/ε0kBT )1/2 being the inverse Debye screening
length. We approximate Gee(k, ω) = Gee(k). Also, the collision frequency is considered in
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Born approximation with respect to a static screened potential Wei(q) = Vei(q)/εRPA(q, 0),
see [7],

Reν(ω) = ε0	
2
0

6π2e2me

∫ ∞

0
dq q6W 2

ei(q)Si(q)
1

ω
ImεRPA(q, ω). (5)

The frequency dependence of the collision frequency is neglected, ν(ω) ≈ ν(0), to uncover
the frequency dependence given by the Mermin approximation. Again, in order to keep
things simple, we consider a uniform distribution of ions, i.e. Si = 1. The RPA dielectric
function is taken from [8]. The imaginary part for the response function in extended Mermin
approximation is shown in figure 1 for � = 0.5, k = 0.3κ and in figure 2 for � = 4, k = κ .
For comparison, the original Mermin expression, the OCP response function and the RPA are
presented as well. Figure 1 visualizes the broadening of the plasmonic excitation due to the
account of collisions in both, the original Mermin and the extended Mermin approximation.
On the other hand, for small values of ω, the extended Mermin approach approaches the static
local field correction, as can be seen in figure 2. Improved calculations accounting for partial
degeneracy, the frequency dependence of the collision frequency and dynamic local fields in
the electronic subsystem are work in progress and subject of a forthcoming publication.
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